US009471417B1

a2 United States Patent (10) Patent No.:  US 9,471,417 B1

Asnaashari 45) Date of Patent: Oct. 18, 2016
(54) METHODS AND APPARATUS FOR (56) References Cited
BACK-ANNOTATING ERRORS IN A RRAM
ARRAY U.S. PATENT DOCUMENTS
. 8,271,855 B2* 9/2012 Norman ................. GI1C 11/56
(71) Applicant: Crossbar, Inc., Santa Clara, CA (US) 714/763
9,098,661 B1* 8/2015 Biswas ............ GOGF 17/5045
3k
(72) Inventor: Mehdi Asnaashari, Danville, CA (US) 2007/0143648 AL*  6/2007 Andreev ............. G171§Z4/57/(1);§1
2008/0162854 Al* 7/2008 Hashimoto ......... GOGF 11/1068
(73) Assignee: CROSSBAR, INC., Santa Clara, CA 7117167
(US) 2016/0005461 Al* 12016 Jo .ccovvvinviienn G11C 29/026
365/148
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Primary Examiner — David Ton
U.S.C. 154(b) by 23 days. 74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
Y, AL y
LLP
(21) Appl. No.: 14/630,143 (57) ABSTRACT
(22) Filed: Feb. 24, 2015 A tyvo-termmal memory array can be configured to address
a single memory cell. A two-terminal memory array can
further be configured to mitigate disturb errors associated
(51) Inmt. CL with other types of memory (e.g., non-two-terminal memory
G1IC 29/00 (2006.01) such as NAND flash memory). Mitigation of disturb errors
GO6F 11710 (2006.01) can allow re-writes and/or overwrites of data stored by the
52) U.S. CL cells without a prior erase operation. In this regard, errors in
(52) p P gard,
CPC oo GO6F 11/1008 (2013.01) the data read from a memory array can be corrected by
(58) TField of Classification Search error-correction code (ECC) and associated corrected data

CPC ... G11C 11/1659: G11C 11/1673: Gl11C can be written back to the memory cells that store the
’ 13/0002; GllC, 13/003 portions of data determined by the ECC to be erroneous data
USPC. oo 7147764 ~ @nd/or incorrect or bad data.

See application file for complete search history.

22 Claims, 10 Drawing Sheets

100
EXAMPLE MEMORY DEVICE
CONTROLLER 142
o 114
ECC Y
COMPONENT | 5
CORRECTED DATA
ERROR BACK 112
ANNOTATOR i
COMPONENT CORRECTION CMD
24 :
Y
¥ ¥ ¥ !
N ‘_\)
HOST i HOST . MEMCORY | ARRAY OF &
DEVICE - e BU";%R(S’ -t |F BUSE MEMORY
08 i 04 - 188 “d 118




US 9,471,417 B1

Sheet 1 of 10

Oct. 18, 2016

U.S. Patent

LA R RN o {212
AMOWIN LI I N I s B PN TS a
40 AVHYY V\\>mo§m§ 1SOH
N
i
N /// mw mv mw
.~ - ////
I . ¥
i T A\ Py
{ - \ = S
[ TRED \ iZ4!
L CND NOLLDZHOD LNINODWOD
N /\\ s AN HOLYLONNY
i~ 9zi m MOVE HOUHI
! VAV QRLTDN0D
N 14 V/ _
vivd Tz vIVa hzmmwM§ou
THEY | T
- A 203
£ib P
- o FOT MITIOULNGD
TV
gL~ | O AAIA AHOWIN TTdNvXE

401
F0INIA
LSOH




US 9,471,417 B1

Sheet 2 of 10

Oct. 18, 2016

U.S. Patent

4
g0z

¥l
AININCSWNOD
HOLYLONNY
HOVY HOHYI

b4 Qﬁ NOLLOTYIOD
LNANOAINOD | | ™ [
HOLYOOT N gzt
—~ QHOM3TOD \w
£ 450 | A e—————r— (v IVT GELOMINOD
. //J M
T 21 N
AR ez
|
|
CANTE] )
oiT it N
AMOWNIN 561 VG
vivd
40 AVHMY IOVAUILNI
AHOWIN Py~
i
¥ ﬁ
%@m NOLLDTNION
CINR - 562
(SM344n9 \_

1

§61 30IA3G

1SOHOL

7

AW\ (SRECRIOLE.L. (00

<A

E1YS
ANINCSWNOD
303




US 9,471,417 B1

Sheet 3 of 10

Oct. 18, 2016

U.S. Patent

HOAY WD _ U 3Ovd e HAINIOIXION 378V R "
® \\\\\\\\\ 4 L ww.m” m @m&
® \\\\\\\\ hd
LIt F0Z ovi
HA4Y L MO ﬂ A0V | T - T ~
: ././ FOVd NIHLIM QUOMIT00 SEFHEAAY DV 202 MO LVOOT GHOMIT00
HAgY £ MO _ L 30Vd pig — z1s — v
gig 56T -~ ; 12
J1EY L NOLYAOT 06 OY.L HLUM A31VIDOESY NOULYINHOANT 40 S3TdWVXE
ALY HOANON
U 30Vd
: LY Ve Dlid
raevd | T
® N !llt!i;«.lll
® SO T -~
//. ().J.lle...lnp - ——
w‘ ww.ﬁ\ﬂm e T e
0l fmo - 48] M) |¥39Vd
ALONWIN b b
S0 AVedY —~ B -
—
Yii viva R gos

SOMOMIAOD ANYIN OLNE QFAKD AMOW3W 40 I9Vd ¥V SINISINA™ PIT vIVT HOIHM NI 3TdiNvX3



US 9,471,417 B1

Sheet 4 of 10

Oct. 18, 2016

U.S. Patent

221 ViVA QR LD3HH00
'SS3HAAY Lig

X

e

e

ooy

135440 149
135440 MO
HAQY JOVd

f4ir4
ANINOINOD
HOLY2OT
JuOMIC00

&

¥21
ANINOINOD
HOLY LONNY
MOVE HOHNMT

01T AMOWIW J40 AVHNV NEHOYE3 gy
L039H00 0L O ININOINOD HOLYDI0T CHOMACGOD WO v.VT DNISH FTdNyXE

AT NIHLIM
135440 lid

HOW
NI LIg

o



US 9,471,417 B1

Sheet 5 of 10

Oct. 18, 2016

U.S. Patent

g g
2 8 % 8 } X 2 8 8@ 2 4 3 ¥ 5} 8 Y & B B8 ﬁ@wﬁ.ﬁnwummmmﬁm
________________________________________ o nNiviva
HIAOOIG
KR DOF WOMA
a
" J‘A\\ SHOHNI
an  SY O @Twiva
A2 LOIHH0D
H
HAQOINT
7309 WOHA a
§11 AHOWIN
NIESTIZO OL MOVE AL
.............................. L R L L
H 4]

s % @ Aieg i * 68 2 m 3 4 3 % 3 4 \ s 8 s
_____________________________ e b 0030 003
- 0% OLVYiYa avay

e e w
i
O1T AMOWIW 40 AvHYY NI 39vd 207 M0
TIT AMOWEIN 40 AVHNY NI SHOMME U8 3 1-LUIN ONLDHHMOD 40 FidiNvXA
#
0o —



U.S. Patent Oct. 18, 2016 Sheet 6 of 10 US 9,471,417 Bl

£ 600

o

/ ST,
START )
-/

(\

¥

RECEIVING, BY A MEMORY DEVICE COMPRISING A
CONTROLLER, DATA COMPRIBING CELL DATA STORED BY
A MEMORY CELL OF A MEMORY ARRAY

— 602

¥

DETERMINING, BY THE MEMORY DEVICE, A BIT ERROR
ASSOCIATED WITH THE CELL DATA BASED ON AN ERROR-
CORRECTING CODE (ECC)

— 584

¥

GENERATING, ACCORDING TO THE ECC, CORRECTED
DATA REPRESENTING A CORRECTED VERSION OF THE
CELL DATA

— 686

¥

WRITING, BY THE MEMORY DEVICE, THE CORRECTED
DATA TO THE MEMORY CELL INCLUDED IN THE MEMORY
ARRAY

— 538




U.S. Patent Oct. 18, 2016 Sheet 7 of 10 US 9,471,417 Bl

-~ T80

A

¥

TRANSMITTING A LOW-LEVEL READ REQUEST THAT

REQUESTS THE DATATO THE MEMORY ARRAY AND — 782

RECEIVING THE DATA IN RESPONSE TO THE LOW-LEVEL
READ REQUEST

¥

RECENING A HIGH-LEVEL READ REQUEST FROM A HOST

DEVICE AND TRANSMITTING THE LOW-LEVEL READ 704

REQUEST TO THE MEMORY ARRAY IN RESPONSE TO
RECEIVING THE HIGH-LEVEL READ REQUEST

STORING THE DATA TO A BUFFER — 706

¥

UPDATING THE CELL DATA STORED IN THE BUFFER WITH |~ 708
THE CORRECTED DATA

¥

TRANSMITTING THE DATA COMPRISING THE CORRECTED | — 71D
DATA TO THE HOST DEVICE




U.S. Patent

Oct. 18, 2016 Sheet 8 of 10

( sTART )

S

¥

US 9,471,417 B1

— 800

RECEIVING, BY A CONTROLLER OF A MEMORY DEVICE,
DATA COMPRISING CELL DATA STORED BY A MEMORY
CELL OF & MEMORY ARRAY

- 882

STORING, BY THE CONTROLLER, THE DATA TO A BUFFER

— 584

¥

RECEIVING, BY THE CONTROLLER, ERROR DATA FROM AN
ERROR-CORRECTING CODE (ECC) COMPONENT, WHEREIN
THE ERROR DATA INDICATES A BIT ERROR ASSOCIATED
WITH THE CELL DATA

_— 806

¥

RECEIVING, BY THE CONTROLLER, CORRECTED DATA
REPRESENTING A CORRECTED VALUE FOR THE CELL
DATA

— 8308

¥

UPDATING, BY THE CONTROLLER, THE CELL DATA STORED
TO THE BUFFER WITH THE CORRECTED DATA

— 816

¥

WRITING, BY THE CONTROLLER, THE CORRECTED DATA
TO THE MEMORY CELL OF THE MEMORY ARRAY

812




U.S. Patent Oct. 18, 2016 Sheet 9 of 10 US 9,471,417 Bl

EXTERNAL COMMAMDS
&
900 —-
4
CONTROLS
STATE MACHINE
SIGNAL 916
iN /E
¥ S
e COMMAND
ROW INTERFACE
CONTROL 914
804
RRAM ARRAY .
SN N 282 r
— — ] INPUT/QUTPUT
o BUFFER
SIGNAL 912
Y (x OUT AN
/
COLUMN
- CONTROL
806
/\ v
G
CLOCK
SOURCE(S)
808
ADDRESS
REGISTER i e
810 B

FIG. 9



U.S. Patent Oct. 18, 2016 Sheet 10 of 10 US 9,471,417 Bl

1018
N £ 1000
| IOPERATING SYSTEM!
I
! 1020
E§APPUCAﬂONS?/M
[T T . 1024
! ' {MODULES
| {MODULES;
| ! 1026
i CpATal e
I
35
: 1004 10
[
| CODEC
| —-1034
5 | OUTPUT g J| OuTPUT
{ ADAPTER(S) H DEVICE(S)
t-~L»f SYSTEM 1030 -
= 1036
| _MEMORY a
3 e 1010 [INTERFACE L o[ INPUT
| [::jo | PORT(S) DEVICE(S)
NON :
D VOLATILE 1028
i 012 U)\\~~4008
' 2 1044
! INTERFACE| @ £ NETWORK
! <1016 || COMMUNICATION ](_r INTERFAGE
' CONNEGTION(S)
I oz
1.y DIsK | v
STORAGE REMOTE
COMPUTER(S)
1014
MEMORY

STORAGE

1038—"1
1040//

FIG. 10



US 9,471,417 B1

1
METHODS AND APPARATUS FOR
BACK-ANNOTATING ERRORS IN A RRAM
ARRAY

TECHNICAL FIELD

This disclosure generally relates to correcting errors in
memory that have been detected by utilizing error-correcting
code (ECC) in connection with reading data from the
memory.

BACKGROUND

Resistive-switching memory represents a recent innova-
tion within the field of integrated circuit technology. While
much of resistive-switching memory technology is in the
development stage, various technological concepts for resis-
tive-switching memory have been demonstrated by the
inventor(s) and are in one or more stages of verification to
prove or disprove associated theories or techniques. The
inventor(s) believe that resistive-switching memory technol-
ogy shows compelling evidence to hold substantial advan-
tages over competing technologies in the semiconductor
electronics industry.

The inventor(s) believe that resistive-switching memory
cells can be configured to have multiple states with distinct
resistance values. For instance, for a single bit cell, the
restive-switching memory cell can be configured to exist in
a relatively low resistance state or, alternatively, in a rela-
tively high resistance state. Multi-bit cells might have addi-
tional states with respective resistances that are distinct from
one another and distinct from the relatively low resistance
state and the relatively high resistance state. The distinct
resistance states of the resistive-switching memory cell
represent distinct logical information states, facilitating digi-
tal memory operations. Accordingly, the inventor(s) believe
that arrays of many such memory cells, can provide many
bits of digital memory storage.

The inventor(s) have been successful in inducing resis-
tive-switching memory to enter one or another resistive state
in response to an external condition. Thus, in transistor
parlance, applying or removing the external condition can
serve to program or de-program (e.g., erase) the memory.
Moreover, depending on physical makeup and electrical
arrangement, a resistive-switching memory cell can gener-
ally maintain a programmed or de-programmed state. Main-
taining a state might require other conditions be met (e.g.,
existence of a minimum operating voltage, existence of a
minimum operating temperature, and so forth), or no con-
ditions be met, depending on the characteristics of a memory
cell device.

The inventor(s) have put forth several proposals for
practical utilization of resistive-switching technology to
include transistor-based memory applications. For instance,
resistive-switching elements are often theorized as viable
alternatives, at least in part, to metal-oxide semiconductor
(MOS) type memory transistors employed for electronic
storage of digital information. Models of resistive-switching
memory devices provide some potential technical advan-
tages over non-volatile FLASH MOS type transistors.

In light of the above, the inventor(s) desire to continue
developing practical utilization of resistive-switching tech-
nology.

SUMMARY

The following presents a simplified summary of the
specification in order to provide a basic understanding of

10

25

40

45

50

55

65

2

some aspects of the specification. This summary is not an
extensive overview of the specification. It is intended to
neither identify key or critical elements of the specification
nor delineate the scope of any particular embodiments of the
specification, or any scope of the claims. Its purpose is to
present some concepts of the specification in a simplified
form as a prelude to the more detailed description that is
presented in this disclosure.

The subject disclosure provides for a memory device that
can correct errors in data read from memory cells of a
memory array and write back to those memory cells the
corrected data. In some embodiments, memory cells that do
not have errors are not written to. The memory device can
comprise a controller, an error-correcting code (ECC) com-
ponent, and an error back-annotator component.

The controller can receive data from a memory array. The
data can comprise cell data representing a portion of the data
that is stored by a particular memory cell. The ECC com-
ponent can detect bit error(s) associated with the cell data
according to an ECC algorithm. In other words, the ECC
component can determine which cells store incorrect data.
The ECC component can generate corrected data, according
to the ECC algorithm, representing the cell data that has
been corrected by the ECC component. The error back-
annotator component can generate a memory correction
command(s) characterized by programming only the
memory cell(s) that store incorrect data, with the corrected
data.

The following description and the drawings set forth
certain illustrative aspects of the specification. These aspects
are indicative, however, of but a few of the various ways in
which the principles of the specification may be employed.
Other advantages and novel features of the specification will
become apparent from the following detailed description of
the specification when considered in conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Numerous aspects, embodiments, objects and advantages
of the present invention will be apparent upon consideration
of the following detailed description, taken in conjunction
with the accompanying drawings, in which like reference
characters refer to like parts throughout. In this specification,
numerous specific details are set forth in order to provide a
thorough understanding of this disclosure. It should be
understood, however, that certain aspects of the subject
disclosure may be practiced without these specific details, or
with other methods, components, materials, etc. In other
instances, well-known structures and devices are shown in
block diagram form to facilitate describing the subject
disclosure.

FIG. 1 illustrates a block diagram of an example memory
device that can provide for writing back corrected data to
memory cells having errors detected by error-correction
code in accordance with certain embodiments of this dis-
closure.

FIG. 2 illustrates a block diagram of an example system
that can provide a codeword locator in connection with
writing back corrected data memory cells with errors
detected by error-correction code in accordance with certain
embodiments of this disclosure.

FIG. 3A depicts an example illustration providing an
example in which the data represents a page of memory that
is divided into many codewords in accordance with certain
embodiments of this disclosure.



US 9,471,417 B1

3

FIG. 3B depicts an example illustration providing an
example of information associated with the tag managed by
the codeword locator component in accordance with certain
embodiments of this disclosure.

FIG. 4 illustrates a block diagram of an example system
providing an example of using data from the codeword
locator component to correct a bit error in array of memory
in accordance with certain embodiments of this disclosure.

FIG. 5 depicts an example provides for an example of
correcting multiple bit errors in the array of memory in
accordance with certain embodiments of this disclosure.

FIG. 6 illustrates an example methodology that can pro-
vide for writing back corrected data to memory cells storing
errors detected by error-correction code in accordance with
certain embodiments of this disclosure.

FIG. 7 illustrates an example methodology that can pro-
vide for additional aspects or elements in connection with
writing back corrected data to memory cells in accordance
with certain embodiments of this disclosure.

FIG. 8 illustrates an example methodology that can pro-
vide for generating corrected data, updating the data in a
buffer with the corrected data, and writing back the corrected
data to memory cells in accordance with certain embodi-
ments of this disclosure.

FIG. 9 illustrates a block diagram of an example elec-
tronic operating environment in accordance with certain
embodiments of this disclosure.

FIG. 10 illustrates a block diagram of an example com-
puting environment in accordance with certain embodiments
of this disclosure.

DETAILED DESCRIPTION

Introduction

Error-correction code (ECC) provides an important func-
tion and in modern memory device architectures, given that
data stored to memory can be corrupted for a variety of
reasons. When data is stored to memory, that data is typi-
cally fed into an encoder portion of an ECC engine that
generates parity data. Both the data and the associated parity
data are then stored to the memory. When the data is later
read from memory, both the data and the associated parity
data are retrieved from memory. Generally, the data is stored
to a buffer, and fed, along with associated parity data, into
a decoder portion of the ECC engine that detects and
typically corrects any errors that may have occurred,
whether due to hard errors (e.g., resulting from memory cell
failure) or soft errors (e.g., resulting from improper pro-
gramming of the cell or subsequent corruption of the data).
If errors are detected, those errors are generally corrected in
the buffer prior to being transmitted to a host device that
issued the read operation. As a result of ECC functions, even
though certain errors exist in memory, those errors can be
corrected after being read from memory.

One of the most popular types of device memory is
NAND flash memory. NAND flash memory has been suc-
cessful in the marketplace, but is believed by the inventor(s)
to have certain limitations. For example, NAND flash
memory is known to be a “dirty” memory, so-called because
it tends to have a high bit-error rate (BER). Working with
dirty memory typically requires comprehensive ECC cov-
erage, which can be expensive in terms of speed, storage and
other resources, additional circuitry and logic, and so on.
Compounding this issue are other disadvantages of NAND
flash memory. As one example, NAND flash memory cannot
write to memory in data increments smaller than a page of
memory and cannot erase memory in data increments

10

15

20

25

30

35

40

45

50

55

60

65

4

smaller than a block of memory (many pages). As another
example, due to the potential for write disturb errors, NAND
flash memory typically must erase a memory location before
that memory location can be programmed with other data.

Accordingly, if all goes well for NAND flash memory,
any errors in the stored data can be corrected by an ECC
engine. Specifically, NAND flash memory controllers are
able to detect errors, and once that data is moved to the
buffer, correct the errors in the buffer. However, NAND flash
memory controller can not re-write the corrupted memory
cells with corrected data because such is either infeasible or
impossible due to the disadvantages noted above. For
example, NAND flash memory does not have the capability
to write to individual memory cells. Moreover, in order to
write a given cell with corrected data, that cell and every
other cell in the same block of memory would need to be first
erased. As a result, correcting errors in NAND flash memory
is simply too expensive and impractical. Instead, errors in
memory keep accumulating until the number of errors in a
particular page of memory approaches the limits of what can
be handled by the ECC engine, in which case the entire page
or block is scrubbed and/or marked bad. During this scrub-
bing process (which is extremely expensive and not done
until there are a high number of errors) the page is read from
memory, corrected, and the corrected data is written to a
different (clean) page of memory. It is appreciated that data
in the physical cell is never corrected, but rather, corrected
data is written to a different cell.

Embodiments of this disclosure relate to mechanisms or
techniques for writing corrected data back to memory. In
that regard, when data is read from memory (e.g., in
response to a read command from a host device), the data
can be placed in a buffer and checked by an ECC engine for
errors. If erroneous data is stored in a memory cell location,
that erroneous data is corrected not only in the buffer, but
also at the memory cell location where the data originated.
In some embodiments, such can be accomplished by lever-
aging two-terminal memory architectures the inventor(s)
believe have advantages over NAND flash memory. For
example, the two-terminal memory disclosed herein can, in
some embodiments, be addressable at a bit level and/or a
memory cell level. As another example, the disclosed two-
terminal memory is not subject to write disturbs that affect
NAND flash memory and can therefore overwrite and/or
re-write data in a given memory cell without the need to first
erase the data. Accordingly, bit errors discovered by an ECC
engine can be corrected at the memory location that sourced
the bit error(s), while leaving other adjacent memory loca-
tions alone, e.g., not writing, or disturbing the adjacent
memory locations such as would occur when writing to a
page of memory to correct only a subset of bits in the page.
Such can provide certain benefits over other memory
devices. For example, ECC logic, circuitry, and overhead
can be reduced. Additionally or alternatively, the capabilities
of a given ECC engine can provide better coverage, which
can extend device life of the cells in the memory array. It is
understood that embodiments disclosed herein can support
multi-level (MLC) cell memory or single-level cell (SLC)
memory.

Examples of two-terminal memory technology include
resistive memory (e.g., resistive-switching memory cell),
ferromagnetic memory, phase change memory, magneto-
resistive memory, organic memory, conductive bridging
memory, and so on. Embodiments of the subject disclosure
can provide a filamentary-based memory cell. One example
of a filamentary-based memory cell can comprise: a con-
ductive layer (e.g. TiN, TaN, TiW) or a conductive silicon



US 9,471,417 B1

5

(Si) bearing layer (e.g., polysilicon, polycrystalline SiGe,
etc.) a resistive switching layer (RSL) having crystalline
defects or defectregions (e.g. amorphous silicon, intrinsic
silicon, non-stoichiometric silicon oxide); and an active
metal layer for providing filament forming particles to the
defect regions of RSL. In various examples, the active metal
layer can include, among others: silver (Ag), gold (Au),
titanium (Ti), nickel (Ni), aluminum (Al), chromium (Cr),
tantalum (Ta), iron (Fe), manganese (Mn), tungsten (W),
vanadium (V), cobalt (Co), platinum (Pt), and palladium
(Pd)), alloys of such metals, as well as materials rich in such
metals, such as non-stiochiometric metal compounds. Other
suitable conductive materials, as well as compounds or
combinations of the foregoing can be employed for the
active metal layer in some aspects of the subject disclosure.
In various embodiments, particles of metal derived from the
active metal layer become trapped within the defect regions
of the RSM. These trapped particles are neutral metal
particles that form conductive filaments within the RSM.
Some details pertaining to embodiments of the subject
disclosure similar to the foregoing example can be found in
the following U.S. patent applications that are licensed to the
assignee of the present application for patent: application
Ser. No. 11/875,541 filed Oct. 19, 2007 and application Ser.
No. 12/575,921 filed Oct. 8, 2009, each of which are
incorporated by reference herein in their respective entireties
and for all purposes.

In some aspects, the two-terminal memory can comprise
20 nanometer (nm) technology, whereas in other aspects the
two-terminal memory can comprise sub-20 nanometer tech-
nology (e.g., 15 nm, 10 nm, 5 nm, and others). Moreover, the
two-terminal memory can have a component area that is less
than about 5 F? (e.g., about 4.28 F?). In some aspects,
three-dimensional stacks of two-terminal memory arrays
can be provided, reducing component area. For instance, a
4.28 F? device can have an effective component area of 2.14
F? for a three-dimensional device having two stacked layers.
As another example, the 4.28 F? device can have an effective
component area of 1.07 F? for a three-dimensional device
having four stacked layers, and so on. In the case of
multi-level cells (MLC), two stacked layers of cells that can
represent two bits of data per cell can have an effective
component area of 1.07 F*, and better component area
metrics can be achieved by either increasing the number of
stacks or the number of bits represented by the cells.

In some embodiments disclosed herein, pipelining can be
supported. For example, a codeword locator can be included
that tags various portions (e.g., codewords) of the data read
from memory with information to identify and/or track the
source of the data. Accordingly, while the ECC engine can
identify a bit error within a given codeword, the codeword
locator can provide information relating to a specific page as
well as to a specific codeword within that page. As noted,
such can allow for correcting errors in memory, even in
cases where pipelining is utilized by an associated memory
controller.

EXAMPLES

Various aspects or features of this disclosure are described
with reference to the drawings, wherein like reference
numerals are used to refer to like elements throughout. In
this specification, numerous specific details are set forth in
order to provide a thorough understanding of this disclosure.
It should be understood, however, that certain aspects of
disclosure may be practiced without these specific details, or
with other methods, components, materials, etc. In other

40

45

55

6

instances, well-known structures and devices are shown in
block diagram form to facilitate describing the subject
disclosure.

Referring initially to FIG. 1, an example memory device
100 is depicted. Memory device 100 can provide for writing
back corrected data to memory cells storing errors detected
by error-correction code. Memory device 100 can be a
removable storage device, which can be connected to or
disconnected from a computing device (e.g., a computer, a
laptop, a terminal, a smart phone, a table computer, etc.) by
way of a communication interface (e.g., a universal serial
bus (USB) interface, or another memory bus or interface). In
some embodiments, memory device 100 can be deployed on
a hardware card for connecting with a server device or other
computing device. In still other embodiments, memory
device 100 can be a stand-alone device configured to com-
municate with a remote host device via a suitable remote
communication platform (e.g., a wireless interface, a cellular
interface, a satellite interface, a wired interface, an Ethernet
interface, a broadband over power line interface, memory
modules such as DIMMs communicating over buses or
interfaces such as DDR3 or DDR4, etc., or the like, or a
suitable combination thereof).

Memory device 100 can comprise a controller 102. Con-
troller 102 can be configured to interface to a host device
106 over a host interface 104. Host interface 104 can operate
to receive (e.g., high-level) host commands from the host
computing device related to array of memory 110 on
memory device 100. Suitable host commands can include a
write command, a read command, an erase command, an
overwrite command, or the like, or suitable combinations
thereof. Additionally, host interface 104 can be configured to
receive data from the host device 106 related to a host write
command, or provide data stored at array of memory 110 to
the host device 106 in response to a host read command.
Controller 102 can further comprise a memory interface 108
configured to communicate with and execute memory opera-
tions (e.g., via low-level commands) in conjunction with
array of memory 110 over one or more memory channels/
data buses. These data buses can be 8-bit channels, 16-bit
channels, or another suitable configuration. In some embodi-
ments, memory controller 102 can perform low-level
memory operations with array of memory 110, including
write, erase, read, etc. in accord with the high-level host
commands.

The array of memory 110 can include an array of memory
cells with configurable states that are mapped to data values,
and thus can store information. For example, array of
memory 110 can include cell 112 that stores cell data 113
representing all or a portion of data 114. Cell data 113 is
intended to represent the specific information stored at cell
112, which is a subset of data 114. In some embodiments,
cell 112 can be two-terminal memory. As described herein,
two-terminal memory (e.g., cell 112) can include a top
electrode and a bottom electrode, with a switching material
in between. Various stable states of the two terminal memory
can be produced in response to application of an external
electrical characteristic (e.g., changing voltages associated
with the top and/or bottom electrode). In response, material
from the top or bottom electrode can extend into the switch-
ing material based on, e.g., the magnitude of the external
electrical characteristic. As this material intrudes into the
switching material, electrical characteristics (e.g., resis-
tance, conductance, etc.) of the two-terminal memory cell
change, representing measurable states that can be mapped
to data values.



US 9,471,417 B1

7

In some embodiments, cell 112 can be non-volatile. For
example, cell 112 can maintain a given state, and therefore
store data 114, without application of an external power
source. Some examples of non-volatile memory to which
some embodiments of the disclosed subject matter is
directed include, e.g., NAND flash memory, phase-change
memory (PCM) also sometimes referred to as phase-change
random access memory (PCRAM), resistive random access
memory (RRAM), magnetoresistive random access memory
(MRAM), conductive-bridging random access memory
(CBRAM) and so forth. In some embodiments, cell 112 can
be a multi-level cell characterized by different measurable
states of cell 112 representing multiple bits of cell data 113.
As used herein, data 114 is intended to relate to information
to be read from array of memory 110 (e.g., in response to a
host device 106 read command), programmed to array of
memory 110 (e.g., in response to a host device 106 write
command), or otherwise associated with array of memory
110 and/or cell 112.

Memory controller 102 can further comprise a central
processing unit (not shown), one or more buffers 116, an
error correcting code (ECC) component 118, an error back-
annotator component 124, as well as other suitable circuitry,
modules, or components. The CPU can be configured to
execute instructions associated with memory device 100.
Buffers 116 can be a set of registers or other storage
elements employed for temporarily storing data such as data
114. For example, if host device 106 requests data from
array of memory 110, the requested data can be stored to
buffers 116 and updated (e.g., in response to an error being
determined to exist) prior to being provided to host device
106. Optionally, data transmitted by host device 106 (e.g., as
part of a write instruction) can be temporarily stored to
buffers 116 prior to being programmed to array of memory
110.

ECC component 118 can be configured to receive data
114 (that includes cell data 113), either directly from array
of memory 110 or from buffer 116. In response, ECC
component can detect bit error(s) associated with cell data
113 in accordance with a suitable ECC algorithm 120. ECC
component 118 can further generate corrected data 122
according to the ECC algorithm 120. By way of example,
such detection/correction and/or algorithm 120 can be based
on various ECC algorithms such as, e.g., a Hamming code,
a Bose-Chaudhuri-Hocquenghem (BCH) code, a Reed-
Solomon (RS) code, a low-density parity check (LDPC)
code, or the like. Corrected data 122 can represent cell data
113 that has been corrected by ECC component 118. In some
embodiments, data 114 can include parity data generated by
ECC component 118 when data 114 was written to array of
memory 110.

Once corrected data 122 is generated, data 114 can be
updated in buffer 116 to reflect the correction of the bit
error(s). Hence, when data 114 is ultimately provided to host
device 106 (e.g., in response to a memory read request), data
114 typically will not include any errors.

Furthermore, error back-annotator component 124 can be
configured to generate memory correction command 126.
Memory correction command 126 can be characterized by
an instruction to program memory cell(s) 112 with corrected
data 122. It is understood that the instruction to update
cell(s) 112 differs from another instruction to update buffer
116 with corrected data 122. For example, fixing bit errors
in buffer 116 can ensure that host device 106 receives data
114 without errors, while fixing bit errors in array of
memory 110 (e.g., the bit error in cell data 113 of cell 112)
can mitigate the reoccurrence of the same error when cell

10

15

20

25

30

35

40

45

50

55

60

8

data 113 is subsequently read. Consequently, the bit error(s)
do not accumulate as is the case in other memory devices
and resources are not wasted on repeatedly correcting the
same bit error(s) each time data is read from a cell with bit
error(s).

In some embodiments, correction command(s) 126 can
operate only on cells of array of memory 110 that are
associated with bit errors detected by ECC component 118.
Said differently, memory correction command(s) 126 can
individually target the cells that store bad data and only
those cells. Such is further distinct from scrubbing opera-
tions performed by other memory devices, as those opera-
tions typically must operate on an entire block or page of
memory in order to correct a few bit errors. In some
embodiments, correction command(s) 126 can be similar or
identical to a write command that writes the corrected data
122 to the associated to the associated cell(s). In some
embodiments, correction command(s) 126 can include a
correction instruction and an error bit address. The correc-
tion instruction can be an instruction to flip the data in the
memory cell defined by the error bit address. For example,
if the memory cell stores a “0”, which was determined to be
an error, that memory cell can be flipped to store a “1”
instead, which represents a correction to the bit error. At the
interface level (e.g., eight or 16-bit interfaces), such can be
effectuated by reading the cell at the error bit address,
sending the read data to an XOR to flip the data, writing the
XOR output to the cell. In operation, the cell is efficiently
reprogrammed from a first state that is logically mapped to
a data value of “0” (that was determined to be an error) to
a second state that is logically mapped to a data value of “1”
in response to correction command(s) 126.

While still referring to FIG. 1, but turning as well to FIG.
2, system 200 is provided. System 200 can provide a
codeword locator in connection with writing back corrected
data memory cells with errors detected by error-correction
code. Similar to what was described previously in connec-
tion with FIG. 1, when controller 102 receives a read request
(e.g., from host device 106) to read certain data from array
of memory 110, controller 102 can request that data (e.g.,
data 114) from array of memory 110 and place data it in
buffer 116. Data 114 (and associated parity data) can be
provided to ECC component 118 in order to determine
whether data 114 includes errors. If not, data 114 can be
shipped to host device 106, error-free. If errors are detected,
those errors can be corrected in buffer 116 by overwriting the
bad data with corrected data 122 in response to correction
command 206. Thereafter, data 114 can be shipped to host
device 106, error-free.

As noted, corrected data 122 can also be provided to array
of memory 110 and/or cell(s) 112 in response to correction
command 126 that can be issued by error back-annotator
component 124. As described, correction command 126 can
take the form of a write instruction that writes corrected data
122 to the appropriate cell(s) from which cell data 113 (data
determined to be in error) originated. In some embodiments,
controller 102 can include codeword locator 202. Codeword
locator 202 can be configured to identify a codeword asso-
ciated with ECC algorithm 120 that comprises cell data 113.
Put another way, codeword locator 202 can track the loca-
tion of the bit error(s) based on a specific codeword, a
specific page of memory or the like. Such can be beneficial
in cases where memory device 100 employs pipelining, and
in particular, pipelining associated with ECC operations in
which many different codewords are pipelined and being
processed in different stages of the ECC component 118,
which may operate many pipelining stages (e.g., about five



US 9,471,417 B1

9

to eight). Codeword locator 202 can operate by tagging
various portions of data 114, which is depicted as tag 204
and associating bit error(s) to the tagged portions of data
114, and further detailed in connection with FIG. 3B.

While still referring to FIG. 2, but turning as well to FIGS.
3A and 3B, illustrations 300 and 310 are depicted, respec-
tively. [lustration 300 provides an example in which data
114 represents a page of memory that is divided into many
codewords. As depicted, array of memory 110 can be
logically separated into n pages of logical memory, where n
can be substantially any positive number. In this example,
logical page i includes the physical cell 112, that stores cell
data 113. Page i is separated into multiple codewords. In
some embodiments, these 1-m, where m can be substan-
tially any number, codewords can represent discrete portions
of page i that are individually processed by ECC component
118. For instance, ECC component 118 can include multiple
decoders that can process one or more codewords 1-m in
parallel. As depicted, cell data 113 is included in codeword
j of logical page i.

Tlustration 310 provides an example of information asso-
ciated with the tag 204 managed by the codeword locator
component 202. As described supra, code locator component
202 can identify a codeword that comprises the cell data 113.
In some embodiments, such identification of cell data 113
can be based on page address 312 and a codeword ID 314
for the codeword within the page identified by page address
312. In this example, when codeword j is received from
array of memory 110, codeword locator component 202 can
generate tag 204. Tag 204 can include page address 312 that
identifies page i, and codeword ID 314 can identify code-
word j. Hence, once ECC component 118 eventually detects
a location of bad data included in cell data 113 that is stored
by cell 112, tag 204 in conjunction with the location of bad
data within the codeword can be used to identify the logical
address associated with cell data 113 and/or physical address
of cell 112, as further detailed with reference to FIGS. 4 and
5.

In some embodiment, the codeword locator component
202 maintains a tag table or index, an example of which is
non-volatile locator table 316. Non-volatile locator table 316
can include page address 312 and codeword 1D 314 for all
codewords in the pipeline. In some embodiments, tag 204
can be communicated to the ECC component 118 as an
index (e.g., table index/pointer 318) pointing to an entry in
the non-volatile locator table 316. Said differently, tag 204
can include a reference to a particular entry in non-volatile
locator table 316 instead of or in addition to including page
address 312 or codeword ID 314. In such embodiments, tag
204 can point to the entry in non-volatile locator table 316
that includes page address 312 or codeword 1D 314 associ-
ated with cell data 113 that was determined to be incorrect.
ECC component 118 and/or error back-annotator component
124 can employ the non-volatile locator table 316 in a
similar manner to appropriately track the location of bad
data regardless of pipelining stage progression.

Turning now to FIG. 4, system 400 is depicted. System
400 provides an example of using data from the codeword
locator component 202 to correct a bit error in array of
memory 110. In this example, error back-annotator compo-
nent 124 can issue memory correction command 126 (which
can be a special-purpose write command) to correct cell data
113 maintained by cell 112. When pipelining is utilized by
controller 102, then additional information may be required
to fully locate the correct bit address, which can be provided
by tag 204 (or a representative tag table) as described
previously. For example, tag 204 can identify page address

10

15

20

25

30

35

40

45

50

55

60

65

10

312 and codeword ID 314. With the aforementioned infor-
mation, codeword locator component 202 determine a page
address (e.g., page address 312), a codeword offset (e.g.,
based on codeword ID 314), and a bit offset within the
codeword given by ECC component 118. As noted previ-
ously, the bit error resides in cell 112 and is depicted here as
data value “x”, which is updated with corrected data 122. In
the event cell 112 is an MLC, then bit address can be
sufficient to update the appropriate bit or bits of cell 112.

Referring now to FIG. 5, illustration 500 is depicted.
Tlustration 500 provides for an example of correcting mul-
tiple bit errors in the array of memory 110. In this example,
a single codeword, codeword j, is examined. Codeword j
represents a portion of page i that is stored in array of
memory 110, and includes two bit errors, denoted with
values “X” and “Y” in strikethrough font to denote that these
values will eventually be updated. Codeword j further
includes parity data 502 that was generated by an encoder of
ECC component 118 when the information included in
codeword j was stored to array of memory 110. In this
example, codeword j represents all or a portion of data 114
and one or more cell(s) 112 store the bit errors labeled “X”
and “Y”. Codeword j (including parity data 502) is provided
to a decoder associated with ECC component 118 and
loaded (either with or without parity data 502) to buffer 116.
ECC component 118 detects location of bit errors associated
with the values “X” and “Y” and error back-annotator
component 124 determines associated corrected data 126,
which have values “D” and “H”. The bit location in buffer
116 storing value “X” is updated with corrected data 126
with value “D” and the bit location in buffer 116 storing
value “Y” is updated with corrected data 126 with value
“H”. Likewise, potentially based on an instruction from
error back-annotator component 124 and potentially with the
aid of codeword locator component 202, the physical
memory locations storing “X” and “Y” in memory 110 are
also appropriately updated with corrected data 126.
Example Methods for Correcting an Error in Memory

The diagrams included herein are described with respect
to interaction between several components, or memory
architectures. It should be appreciated that such diagrams
can include those components and architectures specified
therein, some of the specified components/architectures,
and/or additional components/architectures. Sub-compo-
nents can also be implemented as electrically connected to
other sub-components rather than included within a parent
architecture. Additionally, it is noted that one or more
disclosed processes can be combined into a single process
providing aggregate functionality. For instance, a program
process can comprise an erase process, or vice versa, to
facilitate programming and erasing a semiconductor cell by
way of a single process. In addition, it should be appreciated
that respective rows of multiple cell memory architectures
can be erased in groups (e.g., multiple rows erased concur-
rently) or individually. Moreover, it should be appreciated
that multiple memory cells on a particular row can be
programmed in groups (e.g., multiple memory cells pro-
grammed concurrently) or individually. Components of the
disclosed architectures can also interact with one or more
other components not specifically described herein but
known by those of skill in the art.

In view of the exemplary diagrams described supra,
process methods that can be implemented in accordance
with the disclosed subject matter will be better appreciated
with reference to the flow charts of FIGS. 6-8. While for
purposes of simplicity of explanation, the methods of FIGS.
6-8 are shown and described as a series of blocks, it is to be



US 9,471,417 B1

11

understood and appreciated that the claimed subject matter
is not limited by the order of the blocks, as some blocks may
occur in different orders and/or concurrently with other
blocks from what is depicted and described herein. More-
over, not all illustrated blocks may be required to implement
the methods described herein. Additionally, it should be
further appreciated that the methods disclosed throughout
this specification are capable of being stored on an article of
manufacture to facilitate transporting and transferring such
methodologies to an electronic device. The term article of
manufacture, as used, is intended to encompass a computer
program accessible from any computer-readable device,
device in conjunction with a carrier, or storage medium.

Referring now to FIG. 6, exemplary method 600 is
illustrated. Method 600 can provide for writing back cor-
rected data to memory cells storing errors detected by
error-correction code. At reference numeral 602, a memory
device comprising a controller can receive data. The data
received can comprise cell data stored by a memory cell of
a memory array. Cell data represent a single bit of data in the
case of SLC, or a single bit or multiple bits in the case of
MLC. The memory cell can be two-terminal memory, resis-
tive memory, non-volatile memory, or combinations thereof.

At reference numeral 604, the memory device can deter-
mine a bit error associated with the cell data. This bit error
can be determined by an ECC component of the memory
device and can be based on a suitable ECC such as BCH, RS,
LDPC or the like. At reference numeral 606, the memory
device can generate, according to the suitable ECC, cor-
rected data representing a corrected version of the cell data.

At reference numeral 608, the memory device can write
the corrected data to the memory cell included in the
memory array. Advantageously, subsequent reads of cell
data can yield correct data instead of the bit error previously
detected. Hence, the accumulation of bit errors can be
mitigated, reducing stress and overhead on the ECC com-
ponent and/or extending the coverage provided by the ECC
component. Method 600 can end or proceed to insert A,
which is detailed in connection with FIG. 7.

Turning now to FIG. 7, exemplary method 700 is illus-
trated. Method 700 can provide for additional aspects or
elements in connection with writing back corrected data to
memory cells. As detailed in connection with reference
numeral 602 of FIG. 6, data from the memory array can be
received by the controller, which can be in response to a read
data command or the like. For example, at reference numeral
702, the controller can transmit to the memory array a
low-level read request that request the data and receive the
data in response to this low-level read request.

In some embodiments, the read request can be based on
a similar request from a host device that is received by the
memory device. For instance, at reference numeral 704, the
memory device can receive a high-level read request that
requests the data. As noted, this high-level read request can
be received from a host device. The high-level read request
can be translated into the low-level read request (e.g.,
including logical to physical mapping, etc.) and the low-
level read request can be provided to the memory array in
response.

At reference numeral 706, the data (e.g., received from
the memory array and including the cell data) can be stored
to a buffer. At reference numeral 708, the cell data stored in
the buffer can be updated with the corrected data determined
at reference numeral 606 of FIG. 6. At reference numeral
710, the data comprising the corrected data can be trans-
mitted to the host device.

20

25

30

40

45

50

60

12

It is understood that in some embodiments the cell data
can be updated as part of a memory management procedure.
For example, an associated controller can implement a
memory correction routine, for instance, during periods of
relative low activity. The memory management procedure
can operate to read data from the memory, check for errors,
and fix those errors as detailed herein. Such need not be in
response to a host device requesting the data, although the
memory correction routine can be ordered by the host device
(e.g., based on settings associated with the host device) or
can be determined by the controller (e.g., based on settings
associated with the controller). In some embodiments, the
disclosed subject matter can also be used in connection with
“touching” memory or other techniques associated with
improving memory retention. Given that memory cells tend
to lose the stored data if that data has not been accessed for
a long time, the controller can issue read instructions and/or
the memory correction routine directed to portions of the
memory array that have not been accessed for a period of
time that exceeds a defined threshold.

Referring now to FIG. 8, exemplary method 800 is
illustrated. Method 800 can provide for generating corrected
data, updating the data in a buffer with the corrected data,
and writing back the corrected data to memory cells. At
reference numeral 802, a controller of a memory device can
receive data comprising cell data stored by a memory cell of
a memory array.

At reference numeral 804, the controller can facilitate
storing the data to a buffer. The controller can facilitate
providing the data to an ECC component that detects and/or
corrects errors associated with the data. At reference
numeral 806, the controller can receive from the ECC
component error data. This error data can be generated by
decoders of the ECC component that processes the data (that
includes the cell data) and associated parity data. Generally,
error data indicates one or more bit error associated with the
cell data.

At reference numeral 808, the controller can receive
corrected data representing a corrected value for the cell data
that the error data indicates is in error. At reference numeral
810, the controller can facilitate updating the cell data stored
to the buffer with the corrected data. At reference numeral
812, the controller can facilitate writing the corrected data to
the memory cell of the memory array. Thus, the memory cell
that previously stored cell data determined to be corrupted or
otherwise in error can be replaced with corrected data. It is
appreciated that this correcting of the cell data occurs in the
memory cell, which is distinct from correcting the cell data
in the buffer alone. Correcting the cell data at the memory
cell mitigates the accumulation of errors when data from that
memory cell is subsequently read. Correcting the cell data at
the memory cell is not feasible with other types of memory,
but can be accomplished in connection with the two-termi-
nal memory disclosed herein.

Example Operating Environments

In order to provide a context for the various aspects of the
disclosed subject matter, FIG. 9, as well as the following
discussion, is intended to provide a brief, general description
of a suitable environment in which various aspects of the
disclosed subject matter can be implemented or processed.
While the subject matter has been described above in the
general context of semiconductor architectures and process
methodologies for fabricating and operating such architec-
tures, those skilled in the art will recognize that the subject
disclosure also can be implemented in combination with
other architectures or process methodologies. Moreover,
those skilled in the art will appreciate that the disclosed



US 9,471,417 B1

13

processes can be practiced with a processing system or a
computer processor, either alone or in conjunction with a
host computer, which can include single-processor or mul-
tiprocessor computer systems, mini-computing devices,
mainframe computers, as well as personal computers, hand-
held computing devices (e.g., PDA, phone, watch), micro-
processor-based or programmable consumer or industrial
electronics, and the like. The illustrated aspects may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. However, some,
if not all aspects of the claimed innovation can be practiced
on stand-alone electronic devices, such as a memory card,
Flash memory module, removable memory (e.g. CF card,
USB memory stick, SD card, microSD card), or the like. In
a distributed computing environment, program modules can
be located in both local and remote memory storage modules
or devices.

FIG. 9 illustrates a block diagram of an example operating
and control environment 900 for a RRAM array 902 accord-
ing to aspects of the subject disclosure. In at least one aspect
of the subject disclosure, RRAM array 902 can comprise a
variety of RRAM memory cell technology. Particularly,
RRAM array can be configured or operated to mitigate or
avoid sneak path currents of the RRAM array, as described
herein.

A column controller 906 can be formed adjacent to
RRAM array 902. Moreover, column controller 906 can be
electrically coupled with bit lines of RRAM array 902.
Column controller 906 can control respective bitlines,
applying suitable program, erase or read voltages to selected
bitlines.

In addition, operating and control environment 900 can
comprise a row controller 904. Row controller 904 can be
formed adjacent to column controller 906, and electrically
connected with word lines of RRAM array 902. Row
controller 904 can select particular rows of memory cells
with a suitable selection voltage. Moreover, row controller
904 can facilitate program, erase or read operations by
applying suitable voltages at selected word lines.

A clock source(s) 908 can provide respective clock pulses
to facilitate timing for read, write, and program operations of
row control 904 and column control 906. Clock source(s)
908 can further facilitate selection of word lines or bit lines
in response to external or internal commands received by
operating and control environment 900. An input/output
buffer 912 can be connected to an external host apparatus,
such as a computer or other processing device (not depicted)
by way of an I/O buffer or other I/O communication inter-
face. Input/output buffer 912 can be configured to receive
write data, receive an erase instruction, output readout data,
and receive address data and command data, as well as
address data for respective instructions. Address data can be
transferred to row controller 904 and column controller 906
by an address register 910. In addition, input data is trans-
mitted to RRAM array 902 via signal input lines, and output
data is received from RRAM array 902 via signal output
lines. Input data can be received from the host apparatus, and
output data can be delivered to the host apparatus via the [/O
buffer.

Commands received from the host apparatus can be
provided to a command interface 914. Command interface
914 can be configured to receive external control signals
from the host apparatus, and determine whether data input to
the input/output buffer 912 is write data, a command, or an
address. Input commands can be transferred to a state
machine 916.

10

15

20

25

30

35

40

45

50

55

60

65

14

State machine 916 can be configured to manage program-
ming and reprogramming of RRAM array 902. State
machine 916 receives commands from the host apparatus via
input/output interface 912 and command interface 914, and
manages read, write, erase, data input, data output, and like
functionality associated with RRAM array 902. In some
aspects, state machine 916 can send and receive acknowl-
edgments and negative acknowledgments regarding suc-
cessful receipt or execution of various commands.

To implement read, write, erase, input, output, etc., func-
tionality, state machine 916 can control clock source(s) 908.
Control of clock source(s) 908 can cause output pulses
configured to facilitate row controller 904 and column
controller 906 implementing the particular functionality.
Output pulses can be transferred to selected bit lines by
column controller 906, for instance, or word lines by row
controller 904, for instance.

The illustrated aspects of the disclosure may also be
practiced in distributed computing environments where cer-
tain tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules or stored
information, instructions, or the like can be located in local
or remote memory storage devices.

Moreover, it is to be appreciated that various components
described herein can include electrical circuit(s) that can
include components and circuitry elements of suitable value
in order to implement the embodiments of the subject
innovation(s). Furthermore, it can be appreciated that many
of the various components can be implemented on one or
more IC chips. For example, in one embodiment, a set of
components can be implemented in a single IC chip. In other
embodiments, one or more of respective components are
fabricated or implemented on separate IC chips.

In connection with FIG. 9, the systems and processes
described below can be embodied within hardware, such as
a single integrated circuit (IC) chip, multiple ICs, an appli-
cation specific integrated circuit (ASIC), or the like. Further,
the order in which some or all of the process blocks appear
in each process should not be deemed limiting. Rather, it
should be understood that some of the process blocks can be
executed in a variety of orders, not all of which may be
explicitly illustrated herein.

With reference to FIG. 10, a suitable environment 1000
for implementing various aspects of the claimed subject
matter includes a computer 1002. The computer 1002
includes a processing unit 1004, a system memory 1006, a
codec 1035, and a system bus 1008. The system bus 1008
couples system components including, but not limited to, the
system memory 1006 to the processing unit 1004. The
processing unit 1004 can be any of various available pro-
cessors. Dual microprocessors and other multiprocessor
architectures also can be employed as the processing unit
1004.

The system bus 1008 can be any of several types of bus
structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any
variety of available bus architectures including, but not
limited to, Industrial Standard Architecture (ISA), Micro-
Channel Architecture (MSA), Extended ISA (EISA), Intel-
ligent Drive Electronics (IDE), VESA Local Bus (VLB),
Peripheral Component Interconnect (PCI), Card Bus, Uni-
versal Serial Bus (USB), Advanced Graphics Port (AGP),
Personal Computer Memory Card International Association
bus (PCMCIA), Firewire (IEEE 1394), and Small Computer
Systems Interface (SCSI).



US 9,471,417 B1

15

The system memory 1006 includes volatile memory 1010
and non-volatile memory 1012. The basic input/output sys-
tem (BIOS), containing the basic routines to transfer infor-
mation between elements within the computer 1002, such as
during start-up, is stored in non-volatile memory 1012. In
addition, according to present innovations, codec 1035 may
include at least one of an encoder or decoder, wherein the at
least one of an encoder or decoder may consist of hardware,
software, or a combination of hardware and software.
Although, codec 1035 is depicted as a separate component,
codec 1035 may be contained within non-volatile memory
1012. By way of illustration, and not limitation, non-volatile
memory 1012 can include read only memory (ROM), pro-
grammable ROM (PROM), electrically programmable
ROM (EPROM), electrically erasable programmable ROM
(EEPROM), or flash memory. Volatile memory 1010
includes random access memory (RAM), which acts as
external cache memory. According to present aspects, the
volatile memory may store the write operation retry logic
(not shown in FIG. 10) and the like. By way of illustration
and not limitation, RAM is available in many forms such as
static RAM (SRAM), dynamic RAM (DRAM), synchro-
nous DRAM (SDRAM), double data rate SDRAM (DDR
SDRAM), and enhanced SDRAM (ESDRAM.

Computer 1002 may also include removable/non-remov-
able, volatile/non-volatile computer storage medium. FIG.
10 illustrates, for example, disk storage 1014. Disk storage
1014 includes, but is not limited to, devices like a magnetic
disk drive, solid state disk (SSD) floppy disk drive, tape
drive, Jaz drive, Zip drive, LS-100 drive, flash memory card,
or memory stick. In addition, disk storage 1014 can include
storage medium separately or in combination with other
storage medium including, but not limited to, an optical disk
drive such as a compact disk ROM device (CD-ROM), CD
recordable drive (CD-R Drive), CD rewritable drive (CD-
RW Drive) or a digital versatile disk ROM drive (DVD-
ROM). To facilitate connection of the disk storage devices
1014 to the system bus 1008, a removable or non-removable
interface is typically used, such as interface 1016. It is
appreciated that storage devices 1014 can store information
related to a user. Such information might be stored at or
provided to a server or to an application running on a user
device. In one embodiment, the user can be notified (e.g., by
way of output device(s) 1036) of the types of information
that are stored to disk storage 1014 and/or transmitted to the
server or application. The user can be provided the oppor-
tunity to opt-in or opt-out of having such information
collected and/or shared with the server or application (e.g.,
by way of input from input device(s) 1028).

It is to be appreciated that FIG. 10 describes software that
acts as an intermediary between users and the basic com-
puter resources described in the suitable operating environ-
ment 1000. Such software includes an operating system
1018. Operating system 1018, which can be stored on disk
storage 1014, acts to control and allocate resources of the
computer system 1002. Applications 1020 take advantage of
the management of resources by operating system 1018
through program modules 1024, and program data 1026,
such as the boot/shutdown transaction table and the like,
stored either in system memory 1006 or on disk storage
1014. It is to be appreciated that the claimed subject matter
can be implemented with various operating systems or
combinations of operating systems.

A user enters commands or information into the computer
1002 through input device(s) 1028. Input devices 1028
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,

10

15

20

25

30

35

40

45

50

55

60

65

16

joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other input devices connect to the processing
unit 1004 through the system bus 1008 via interface port(s)
1030. Interface port(s) 1030 include, for example, a serial
port, a parallel port, a game port, and a universal serial bus
(USB). Output device(s) 1036 use some of the same type of
ports as input device(s) 1028. Thus, for example, a USB port
may be used to provide input to computer 1002 and to output
information from computer 1002 to an output device 1036.
Output adapter 1034 is provided to illustrate that there are
some output devices 1036 like monitors, speakers, and
printers, among other output devices 1036, which require
special adapters. The output adapters 1034 include, by way
of illustration and not limitation, video and sound cards that
provide a means of connection between the output device
1036 and the system bus 1008. It should be noted that other
devices and/or systems of devices provide both input and
output capabilities such as remote computer(s) 1038.

Computer 1002 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 1038. The remote computer(s)
1038 can be a personal computer, a server, a router, a
network PC, a workstation, a microprocessor based appli-
ance, a peer device, a smart phone, a tablet, or other network
node, and typically includes many of the elements described
relative to computer 1002. For purposes of brevity, only a
memory storage device 1040 is illustrated with remote
computer(s) 1038. Remote computer(s) 1038 is logically
connected to computer 1002 through a network interface
1042 and then connected via communication connection(s)
1044. Network interface 1042 encompasses wire and/or
wireless communication networks such as local-area net-
works (LAN) and wide-area networks (WAN) and cellular
networks. LAN technologies include Fiber Distributed Data
Interface (FDDI), Copper Distributed Data Interface
(CDDI), Ethernet, Token Ring and the like. WAN technolo-
gies include, but are not limited to, point-to-point links,
circuit switching networks like Integrated Services Digital
Networks (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL).

Communication connection(s) 1044 refers to the hard-
ware/software employed to connect the network interface
1042 to the bus 1008. While communication connection
1044 is shown for illustrative clarity inside computer 1002,
it can also be external to computer 1002. The hardware/
software necessary for connection to the network interface
1042 includes, for exemplary purposes only, internal and
external technologies such as, modems including regular
telephone grade modems, cable modems and DSL modems,
ISDN adapters, and wired and wireless Ethernet cards, hubs,
and routers.

As utilized herein, terms “component,” “system,” “archi-
tecture” and the like are intended to refer to a computer or
electronic-related entity, either hardware, a combination of
hardware and software, software (e.g., in execution), or
firmware. For example, a component can be one or more
transistors, a memory cell, an arrangement of transistors or
memory cells, a gate array, a programmable gate array, an
application specific integrated circuit, a controller, a proces-
sor, a process running on the processor, an object, execut-
able, program or application accessing or interfacing with
semiconductor memory, a computer, or the like, or a suitable
combination thereof. The component can include erasable
programming (e.g., process instructions at least in part

29 < 29 <



US 9,471,417 B1

17

stored in erasable memory) or hard programming (e.g.,
process instructions burned into non-erasable memory at
manufacture).

By way of illustration, both a process executed from
memory and the processor can be a component. As another
example, an architecture can include an arrangement of
electronic hardware (e.g., parallel or serial transistors), pro-
cessing instructions and a processor, which implement the
processing instructions in a manner suitable to the arrange-
ment of electronic hardware. In addition, an architecture can
include a single component (e.g., a transistor, a gate array, .
. . ) or an arrangement of components (e.g., a series or
parallel arrangement of transistors, a gate array connected
with program circuitry, power leads, electrical ground, input
signal lines and output signal lines, and so on). A system can
include one or more components as well as one or more
architectures. One example system can include a switching
block architecture comprising crossed input/output lines and
pass gate transistors, as well as power source(s), signal
generator(s), communication bus(ses), controllers, 1/O inter-
face, address registers, and so on. It is to be appreciated that
some overlap in definitions is anticipated, and an architec-
ture or a system can be a stand-alone component, or a
component of another architecture, system, etc.

In addition to the foregoing, the disclosed subject matter
can be implemented as a method, apparatus, or article of
manufacture using typical manufacturing, programming or
engineering techniques to produce hardware, firmware, soft-
ware, or any suitable combination thereof to control an
electronic device to implement the disclosed subject matter.
The terms “apparatus” and “article of manufacture” where
used herein are intended to encompass an electronic device,
a semiconductor device, a computer, or a computer program
accessible from any computer-readable device, carrier, or
media. Computer-readable media can include hardware
media, or software media. In addition, the media can include
non-transitory media, or transport media. In one example,
non-transitory media can include computer readable hard-
ware media. Specific examples of computer readable hard-
ware media can include but are not limited to magnetic
storage devices (e.g., hard disk, floppy disk, magnetic
strips . . . ), optical disks (e.g., compact disk (CD), digital
versatile disk (DVD) . . . ), smart cards, and flash memory
devices (e.g., card, stick, key drive . . . ). Computer-readable
transport media can include carrier waves, or the like. Of
course, those skilled in the art will recognize many modi-
fications can be made to this configuration without departing
from the scope or spirit of the disclosed subject matter.

What has been described above includes examples of the
subject innovation. It is, of course, not possible to describe
every conceivable combination of components or method-
ologies for purposes of describing the subject innovation,
but one of ordinary skill in the art can recognize that many
further combinations and permutations of the subject inno-
vation are possible. Accordingly, the disclosed subject mat-
ter is intended to embrace all such alterations, modifications
and variations that fall within the spirit and scope of the
disclosure. Furthermore, to the extent that a term “includes”,
“including”, “has” or “having” and variants thereof is used
in either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

Moreover, the word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect
or design described herein as “exemplary” is not necessarily
to be construed as preferred or advantageous over other

40

45

18

aspects or designs. Rather, use of the word exemplary is
intended to present concepts in a concrete fashion. As used
in this application, the term “or” is intended to mean an
inclusive “or” rather than an exclusive “or”. That is, unless
specified otherwise, or clear from context, “X employs A or
B” is intended to mean any of the natural inclusive permu-
tations. That is, if X employs A; X employs B; or X employs
both A and B, then “X employs A or B” is satisfied under any
of the foregoing instances. In addition, the articles “a” and
“an” as used in this application and the appended claims
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form.

Additionally, some portions of the detailed description
have been presented in terms of algorithms or process
operations on data bits within electronic memory. These
process descriptions or representations are mechanisms
employed by those cognizant in the art to effectively convey
the substance of their work to others equally skilled. A
process is here, generally, conceived to be a self-consistent
sequence of acts leading to a desired result. The acts are
those requiring physical manipulations of physical quanti-
ties. Typically, though not necessarily, these quantities take
the form of electrical and/or magnetic signals capable of
being stored, transferred, combined, compared, and/or oth-
erwise manipulated.

It has proven convenient, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be
borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise or apparent from the
foregoing discussion, it is appreciated that throughout the
disclosed subject matter, discussions utilizing terms such as
processing, computing, replicating, mimicking, determin-
ing, or transmitting, and the like, refer to the action and
processes of processing systems, and/or similar consumer or
industrial electronic devices or machines, that manipulate or
transform data or signals represented as physical (electrical
or electronic) quantities within the circuits, registers or
memories of the electronic device(s), into other data or
signals similarly represented as physical quantities within
the machine or computer system memories or registers or
other such information storage, transmission and/or display
devices.

In regard to the various functions performed by the above
described components, architectures, circuits, processes and
the like, the terms (including a reference to a “means”) used
to describe such components are intended to correspond,
unless otherwise indicated, to any component which per-
forms the specified function of the described component
(e.g., a functional equivalent), even though not structurally
equivalent to the disclosed structure, which performs the
function in the herein illustrated exemplary aspects of the
embodiments. In addition, while a particular feature may
have been disclosed with respect to only one of several
implementations, such feature may be combined with one or
more other features of the other implementations as may be
desired and advantageous for any given or particular appli-
cation. It will also be recognized that the embodiments
include a system as well as a computer-readable medium
having computer-executable instructions for performing the
acts and/or events of the various processes.



US 9,471,417 B1

19

What is claimed is:

1. A non-volatile memory device, comprising:

a controller portion that receives, from a memory array
comprising a plurality of non-volatile memory cells, a
plurality of read data and parity data associated with
write data for the plurality of non-volatile memory
cells, wherein the plurality of non-volatile memory
cells includes a first set of one or more non-volatile
memory cells and a second set of non-volatile memory
cells;

an error-correcting code (ECC) portion coupled to the
controller portion, wherein the ECC portion receives
the plurality of read data and the parity data, wherein
the ECC portion determines non-volatile memory cells
for the first set of one or more non-volatile memory
cells having read data that is incorrect in response to an
ECC algorithm; and

an error back-annotator component coupled to the ECC
portion that generates a memory correction command
characterized by programming the non-volatile
memory cells of the first set of one or more non-volatile
memory cells with modified data but not all of the
non-volatile memory cells from the second set of
non-volatile memory cells.

2. The memory device of claim 1, wherein the memory

cell is a non-volatile, resistive, two-terminal memory cell.

3. The memory device of claim 1, wherein the plurality of
non-volatile memory cells is one of: phase-change memory
(PCM), resistive random access memory (RRAM), magne-
toresistive random access memory (MRAM), or conductive-
bridging random access memory (CBRAM).

4. The memory device of claim 3, wherein the controller
portion requests the plurality of read data from the memory
array in response to receiving a request for the plurality of
read data from the host device.

5. The memory device of claim 1, wherein the controller
portion interfaces to a host device via a host interface.

6. The memory device of claim 1, wherein the ECC
algorithm is at least one of a Hamming code, a Bose-
Chaudhuri-Hocquenghem (BCH) code, a Reed-Solomon
(RS) code, or a low-density parity check (LDPC) code.

7. The memory device of claim 1, further comprising a
buffer device coupled to the ECC portion that temporarily
stores the plurality of read data.

8. The memory device of claim 7, wherein the memory
correction command is further characterized by updating the
plurality of read data stored in the buffer device with the
modified data.

9. The memory device of claim 1, wherein the memory
device transmits a combination of the plurality of read data
and the modified data to a host device.

10. The memory device of claim 1, wherein the controller
portion includes a code locator component that identifies the
parity data associated with the write data for the plurality of
memory cells.

11. The memory device of claim 10, wherein the parity
data associated with the plurality of read data is determined
from multiple parity data stored in the memory array.

12. The memory device of claim 1, wherein a memory cell
of the plurality of non-volatile memory cells is a multi-level

10

20

25

30

35

40

45

50

55

20

cell (MLC) characterized by measurable states of the ML.C
representing multiple bits of information.

13. A method for a memory device, comprising:

receiving, in a controller, data comprising a plurality of

read data stored in a plurality of non-volatile memory
cells in a memory array and parity data associated with
data written into the plurality of non-volatile memory
cells, wherein the plurality of non-volatile memory
cells includes a first set of one or more memory cells
and a second set of memory cells;

determining, by the controller, memory cells for the first

set of one or more memory cells having read data that
is incorrect, in response to a comparison with the parity
data;

determining, in the controller, corrected read data for the

memory cells in the first set of one or more memory
cells; and
directing writing, with the controller, of the corrected read
data to memory cells in the first set of one or more
memory cells, while inhibiting writing, with the con-
troller, of data to at least one memory cell in the second
set of memory cells.
14. The method of claim 13, further comprising transmit-
ting a low-level read request that requests the plurality of
read data from the memory array and receiving the plurality
of read data in response to the low-level read request.
15. The method of claim 14, further comprising receiving
a high-level read request from a host device and transmitting
the low-level read request to the memory array in response
to receiving the high-level read request.
16. The method of claim 13, further comprising storing
the plurality of read data to a buffer.
17. The method of claim 16, further comprising updating
the plurality of read data stored in the buffer with the
corrected read data.
18. The method of claim 13, further comprising transmit-
ting a combination of the plurality of read data and the
corrected read data to a host device.
19. A method for a memory device, comprising:
receiving, in a controller, data comprising cell data stored
in a non-volatile memory cell of a memory array;

receiving error information from an error-correcting code
(ECC) component, wherein the error information rep-
resents first information associated with a bit error
associated with the cell data;

receiving, in the controller, corrected information repre-

senting second information associated with a corrected
value for the cell data; and

directing, with the controller, a write of the corrected

information to the non-volatile memory cell.

20. The method of claim 19, further comprising receiving
the data in response to transmitting a low-level read request
to the memory array.

21. The method of claim 20, further comprising transmit-
ting the low-level read request to the memory array in
response to receiving a high-level read request from a host
device.

22. The method of claim 21, further comprising transmit-
ting the corrected information to the host device.

#* #* #* #* #*



